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Abstract--An inverse radiation analysis for simultaneous estimation of the single scattering albedo, the 
optical thickness and the phase function, from the knowledge of the exit radiation intensities is presented. 
A genetic algorithm is adopted as the optimizer to search the parameters of the radiation system. The study 
shows that the single scattering albedo and the optical thickness can be estimated accurately even with 
noisy data. The estimation of the phase function is more difficult than that of the single scattering albedo 

and the optical thickness. Copyright © 1996 Elsevier Science Ltd. 

IINTRODUCTION 

Radiation heat transfer in a participating medium 
has numerous engineering applications in a variety of 
areas such as fibr,~us insulation, glass manufacture 
and energy conservation. Although several techniques 
are available for the solutions of the radiation heat 
transfer problems, the radiative properties of the 
medium, such as the single scattering albedo, the 
extinction coefficient and the phase function, are 
uncertain. Inverse radiation analysis is concerned with 
the determination of the radiative properties from 
various types of radiation measurements. Many stud- 
ies have been reported for the solution of the inverse 
problems [1-7]. A general inverse radiation problem 
consists of determining the single scattering albedo, 
the optical thickness and the phase function. The 
problem is difficult to solve because the phase function 
is represented by a series of the Legendre polynomials ; 
therefore a large number of expansion coefficients 
must be estimated. Step function [4] and Henyey- 
Greenstein function [5] approximations for the phase 
function have been proposed to reduce the unknowns 
to be evaluated. Kamiuto [6] has estimated a complete 
profile of the phase function and the single scattering 
albedo. In the paper, the optical thickness has con- 
sidered to be known or determined by the light-trans- 
mission method. An extensive review of the inverse 
problems has been given in a series of papers by 
McCormic [8-10]. 

Genetic algorithms [11] are the search methods that 
combine the concept of survival-of-the-fittest among 

string patterns with a regulated yet randomized infor- 
mation exchange. In 1962, Holland [12] explored the 
adaptive process in artificial systems. Based on 
Fraser's search algorithm [13, 14] in natural systems, 
the Holland adaptive process is an artificial algorithm 
in which the system can adjust itself to changes in the 
environment. Five years later, Bagley [15] named this 
adaptive process a genetic algorithm and constructed 
a genetic algorithm to search parameter sets in a game- 
playing problem. Later on, Hollstien [16] applied gen- 
etic algorithms to a digital feedback problem in a 
computer control system. With the progress in genetic 
algorithm theory, many applications have been 
employed. These applications included mass-spring- 
dashpot system identification, gas pipeline design, 
VLSI circuit layout, etc. [17]. In those researches, the 
genetic algorithms appear both global and efficient 
over a broad spectrum of problems; two major fea- 
tures contributed to this belief. Firstly, genetic algo- 
rithms have a distinctive pattern in a search sample. 
Instead of a point-to-point search, the search sample 
is expanded to a group in which a search point moves 
among peaks. Consequently, the probability of find- 
ing a near-global optimal solution is raised. Another 
feature is the use of payoff (objective function) infor- 
mation instead of using derivatives (sensitivity analy- 
sis) or other auxiliary knowledge. Thus, they are not 
restricted to the conditions of continuity, sensitivity, 
convexity, monotonicity and nonlinearity of both 
objective functions and constraints. In this paper, we 
apply a genetic algorithm to solve the inverse problem 
for simultaneously determining the single scattering 
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NOMENCLATURE 

expansion coefficients for the phase 
function 
[gO, "~o, ao, a l ,  • • • ,  aN] T 
Chandrasekhar polynomials 
radiation intensity 
objective function 
Legendre polynomials 
phase function 
measured exit radiation intensities at 
the surface z = 0 
measured exit radiation intensities at 
the surface z = %. 

Greek symbols 
p direction cosine 
a standard deviation 
z optical variable 
ro optical thickness 
09 single scattering albedo 

eigenvalues 
random variable. 

Superscripts 
T transpose. 

albedo, the optical thickness and the phase function, 
from the knowledge of the exit radiation intensities. 

ANALYSIS 

Consider an azimuthally symmetric, absorbing, 
anisotropically scattering, gray, plane-parallel 
medium, of optical thickness z0, subjected to isotropic 
incident radiation at the boundary surface z = 0 and 
no external incident radiation at z = %. The equation 
of radiative transfer and the boundary conditions can 
be written as [18] 

/ t ~ -  +I(z ,  #) = lp(p,#')I(z,p')dlf (1) 

I ( 0 , # ) =  1 ~ > 0  (2) 

I(%,--p) = 0  ,u>O. (3) 

Here, I(~, #) is the radiation intensity, r is the optical 
variable, # is the cosine of the angle between the direc- 
tion of the radiation intensity and the positive z axis, 
co is the single scattering albedo, and p(p, #') is the 
phase function, which is expressed in terms of the 
Legendre polynomials as 

N* 
p(p,p') = ~ a.P.(#)P.(#'). (4) 

n=0 

Using the Pu method [19], the solution for the radi- 
ation intensity I(z,/~) is expressed in the form 

I(z,#) = ~ 2f-f-~ P.(,u) 

×j~=l[Aje-'/~J+(--1)"Bje-(%-°/¢J]g,,(~j) (5)  

where J* = (N+  1)/2, N is an odd integer, g.(~) are 
the Chandrasekhar polynomials determined from the 
recurrence formula 

(n+ 1)9.+,(~) = h.~.q.(~)-ng.-,(O (6) 

for n = 0 , 1  . . . . .  N, with g 0 ( l ) =  1 and h.= 
2n + 1- goa.. The eigenvalues ~j, j = 1,2, . . . ,  J*, are 
the J* positive solutions of the following eigenvalue 
problem : 

n(n-- I) 1 F(n+ l) z n 2 

h.~_,g"-~(¢)+h. L h.+, +h~ZT_,] 
× g.(~)+ (n+2)(n+ 

h.+lh. 1)g"+2(~) = ~2g.(~) (7) 

for n = 0,2,4, . . . ,  N--  1. 
The constants Aj and Bj are determined by requiring 

the solution given by equation (5) to satisfy the Mar- 
shak boundary condition [18], from which we can 
show that 

.~o~-~- S.,.j~=~ [Aj+(-1)"Bje-~°/~'].q.(~j) = S.,o 

(8) 
and 

,=o 2 S , . , j~  (-1)"Aje-~o/~J+Bj g , ( ~ ) = O  

(9) 
for a = 0,1 . . . . .  ( N -  1)/2, where 

S~'n = f l  P2~+l  (IA)Pn(l t) dl~. (10) 

Once Aj and Bj are available, the exit radiation inten- 
sities at z = 0 and z = z0 are calculated from [19] 

(D N 
I(0,  - U) = ~.Y~._=o a .P. ( l~)  

x J=,~ ~j[(-1)"Aj 
><g~(~y) / ~ > 0  (11) 
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and 

qZO N 

I(zo, #) = e -'o/J' + -2,~=o a,e,(.#) 

I- e-'o/"--e -'°,¢, l--e-'o/"e-'o/', l 
x ,-, ~:LA' ; : - - E  +(- I)"B, ~ j 

xg. (~j )  U > 0 .  (12) 

The inverse radiation problem involves the deter- 
mination of the single scattering albedo, the optical 
thickness, and the phase function from the knowledge 
of the exit radiation intensities. In order to solve this 
problem, we define the objective function 

J(b) = r ° [I(0, it ;b)- r(/~)]2 d# 
d- l 

j., 
+ [I(~0,.;h)-Z(~,)12d~, (13) 

0 

where Y(#) and Z(~) are the measured exit radiation 
intensities at the surfaces T = 0 and ~ = %, respec- 
tively ; I(0,/~; b) and I(~0, ~ ; b) are the estimated exit 
radiation intensifies at the surfaces ~ = 0 and ~ = z0, 
respectively, by using an estimated vector b = [•, Zo, 
a0, al . . . . .  au] r. The solution of the inverse problem 
is obtained by minimizing the value of the objective 
function with respect to the unknown parameters. A 
genetic algorithm is used for this optimization process, 
which is described next. 

Genetic algoriti~ms (GA) work iteration by iter- 
ation, successively generating and testing a population 
of strings. The process is similar to a natural popu- 
lation of biological creatures where successive gen- 
erations of creatures are conceived, born and raised 
until they themselves are ready to reproduce. For  illus- 
tration, a simple GA adopted from Goldberg's 
rescarch [17] will be used. There are three operators in 
a simple GA : replroduction, crossover and mutation. 
After thc initial population and its fitness (the value 
of the objective fimction) are give, the reproduction 
process starts. It duplicates part of the previous gen- 
eration that has the preferable fitness. Then a cross- 
over operation follows. It randomly mates pairs from 
the newly reproduced string, reassembles part of the 
parents strings and generates pairs of offspring to 
replace thc parents. Finally, the mutation operator 
randomly changes the genes in a string through an 
assigned probabilJity. Once the first trial is complcted, 
the iterations will not stop until a satisfactory solution 
is reached. 

Reproduction is a process in which individual 
strings are duplicated according to their objective 
function values. The values can be thought of as some 
measure of the maximized profit, utility, or goodness, 
such as minimum weight. In applying these values 
to weight optimization, it can be considered as the 
minimized weight. In that case, 'copying strings 
according to their fitness values' means that strings 

with a lower value have a higher probability of con- 
tributing one or more offspring in the next generation. 
The reproduction operator may be implemented in 
algorithmic form in a number of ways. The easiest is 
to create a biased roulette wheel, where each current 
string in the population has a roulette wheel slot sized 
according to its fitness. Each time a new offspring is 
required, a simple spin of the weighted roulette wheel 
yields the reproduction candidate. In this way more 
fit strings have a higher number of offspring in the 
succeeding generation. Once a string has been selected 
for reproduction, an exact replica of the string is made. 
This string is then entered into a mating pool, an 
intermediate new population, for further genetic oper- 
ator action. 

After reproduction, a simple crossover may proceed 
in two steps. Firstly, it randomly pairs members of 
the newly reproduced strings in the mating pool with 
uniform distribution. Secondly, genes in each pair of 
strings are interchanged as follows: a position, k, 
along the strings is selected uniformly at random 
between 1 and the string length, l, less one. Two new 
strings are created by swapping all characters between 
positions k +  1 and l inclusively. Mutation plays a 
decidedly secondary role in the operation of tradition 
genetic algorithms. A mutation operator is needed 
because it prevents the occasional loss of potentially 
useful genetic material from reproduction and cross- 
over. Even though the reproduction and crossover 
effectively search and reformulate the extant genes, 
occasionally they may become overzealous and drop 
some material. The function of the mutation operator 
is to protect against such an irrecoverable loss and is 
the occasional random alteration of the value of a 
string position. 

RESULTS AND DISCUSSION 

We now present numerical results to demonstrate 
the use of a genetic algorithm for simultaneously esti- 
mating the single scattering albedo, the optical thick- 
ness and the phase function, from the knowledge of 
the exit radiation intensities. In order to simulate the 
measured exit intensities with measurement errors, Y, 
and Z, random errors of standard deviation a are 
added to the exact intensities computed from the solu- 
tion of the direct problem. Thus, we have 

Ym . . . . .  ed = Yexact "1- 0"~ ( 1 4 )  

and 

Zm . . . . . .  d = Zox,ct + o (  (15) 

where ( is a random variable with normal distribution, 
zero mean and unit standard deviation. For  all the 
results presented in this work, the exit radiation inten- 
sities are measured at the surfaces z --- 0 and z = z0, 
and 20 measurement points are taken at each surface 
over the polar angle interval 0 ~< 0 ~< n/2. 

A genetic algorithm, Genitor [20], is used to fulfil 
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Table 1. The coefficients of  the phase function used in the 
calculation [21]. 

Phase function I Phase function II 

II  a n 

0 1 
1 2.00735 
2 2.74550 
3 2.79268 
4 3.04641 
5 2.97857 
6 3.05581 
7 2.98020 
8 2.53995 
9 1.88679 

10 0.85129 
11 0.24523 
12 -0 .02434  
13 0.12820 
14 0.10524 
15 -0 .00671 
16 0.03863 
17 0.00100 
18 0.00036 
19 0.00002 

a, 
1 

0.84664 
0.03635 

-0 .04477 
0.33367 
0.13727 
0.02852 
0.00353 
0.00027 

the  example s .  G e n i t o r  r e p r o d u c e s  on ly  one  o f f sp r ing  

w h i c h  is r e c o m b i n e d  b e t w e e n  t wo  p a r e n t s  a t  e a c h  

g e n e r a t i o n ;  e ach  o f f sp r ing  is i m m e d i a t e l y  e v a l u a t e d  

a n d  rep laces  the  w o r s t  f i tness.  A r a n k - b a s e d  se lec t ion  

s c h e m e  is u s e d  wi th  a l inear  select ive b ias  o f  two.  T h e  

r e d u c e d  s u r r o g a t e  s t r a t egy  is u s e d  as  the  c r o s s o v e r  

o p e r a t o r .  T h e  a d a p t i v e  m u t a t i o n  ra te  is set  to 0.005.  

T h e  s t r ing  l eng th  is 20 b i t s  for  e ach  var iab le .  T h e  

p o p u l a t i o n  size is 5000 for  e x a m p l e  one  a n d  2000 for  

e x a m p l e  two,  respect ively .  

In  the  first case,  the  s ingle s ca t t e r ing  a l b e d o  a n d  

the  opt ica l  t h i c k n e s s  a re  a s s u m e d  to be  0.9 a n d  1, 

respect ively .  P h a s e  f u n c t i o n  I o f  T ab l e  1 [21] is u sed  

for  the  s ca t t e r ing  cha rac t e r i s t i c s  o f  t he  m e d i u m ,  w h i c h  

is d e t e r m i n e d  f r o m  the  M i e  t h e o r y  [18]. T h e  resu l t s  o f  

the  inve r se  ana lys i s  a re  s h o w n  in Figs .  1 a n d  2. F i g u r e  

1 s h o w s  the  bes t  g e n e r a t i o n  resu l t s  in t h r ee  d i f fe rent  

r u n s  for  s i m u l a t e d  e x p e r i m e n t a l  d a t a  c o n t a i n i n g  

e r ro r s  o f  s t a n d a r d  d e v i a t i o n  a = 0.01. T h e  t r e n d  o f  

i m p r o v e m e n t  is s ign i f i can t  in the  b e g i n n i n g  gen-  
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Fig. 2. Simultaneous estimation of  the single scattering 
albedo, the optical thickness and the phase function, by 
inverse analysis with experimental errors ~r = 0.01 and 

a = 0.02. 

e r a t i o n s  in all t h ree  runs .  A f t e r  the  ear ly  g e n e r a t i o n s ,  

t he  bes t  r e su l t s  o f  t he  th ree  r u n s  a re  c lose  to one  

a n o t h e r .  W i t h  e x p e r i m e n t a l  e r ro r s  o = 0.02, t he  t r e n d  

o f  i m p r o v e m e n t  in th ree  d i f fe rent  r u n s  is the  s a m e  as  

t h a t  for  a = 0.01. F i g u r e  2 s h o w s  the  r e su l t s  o b t a i n e d  

w i th  t he  inve r se  ana lys i s  for  ~r = 0.01 a n d  a = 0.02. 

A s  m a y  be  seen  f r o m  th i s  f igure,  the  e s t i m a t e d  va lues  

a re  c lose  to the i r  exac t  va lues .  I n c r e a s i n g  cr f r o m  0.01 

to  0.02,  the  a c c u r a c y  o f  the  e s t i m a t i o n  decreases .  

F i g u r e s  3 a n d  4 s h o w  the  re su l t s  o f  the  inve r se  
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Fig. 3. Best generation results for simultaneous estimation 
of  the single scattering albedo, the optical thickness and the 

phase function, with experimental errors a = 0.001. 
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Fig. 1. Best generation results for simultaneous estimation 
of  the single scattering albedo, the optical thickness and the 

phase function, with experimental errors a = 0.01. 
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Fig. 4. Simultaneous estimation of  the single scattering 
albedo, the optical thickness and the phase function, by 
inverse analysis with experimental errors cr = 0.001 and 

a = 0.004. 
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analysis for a medium with single scattering albedo 
0.95, optical thickness 5 and phase function II of  Table 
1 [21]. The best generation results in three different 
runs by the inverse analysis with experimental errors 
a = 0.001 are shown in Fig. 3. Figure 4 shows the 
results obtained with the inverse analysis for simulated 
experimental data containing errors of standard devi- 
ation tr = 0.001 and tr = 0.004. The accuracy of the 
estimation for the single scattering albedo and the 
optical thickness is very good. The estimation of the 
phase function is more difficult than that of  the single 
scattering albedo and the optical thickness. Com- 
paring Figs. 1 and 2 with Figs. 3 and 4, we note that 
the accuracy of the estimation is more sensitive to the 
measurement errors as the optical thickness increased. 
For an optical thickness of 5, the measurement errors 
need to be much smaller than when the optical thick- 
ness is unity. 

CONCLUSIONS 

A genetic algorithm has been used to solve the 
inverse radiation problem for simultaneously deter- 
mining the single scattering albedo, the optical thick- 
ness and the phase function, from the knowledge of 
the exit radiation intensities. The genetic algorithm is 
adopted as the optimizer to search the parameters 
of the radiation system according to the simulated 
radiation intensities exiting the system. The study 
shows that the single scattering albedo and the optical 
thickness can be estimated accurately even with noisy 
data. The estimation of the phase function is more 
difficult than that of the single scattering albedo and 
the optical thickness. As the optical thickness 
increased, the accuracy of the estimation becomes 
more sensitive to the measurement errors. The genetic 
algorithms are not  efficient but  are quite robust, i.e. 
the optimization procedure will yield a near-global 
optimal solution. It is suggested that the genetic algo- 
rithms are used when the traditional optimization 
methods fail, or are difficult to apply, such as in the 
inverse radiation problem considered here. It is evi- 
dent that the genetic algorithms have the potential 
to be implemented in the field of inverse radiation 
problems. 
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